MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag provides an overview of the course and discusses how we use computational models to understand the world in which we live, in particular he discusses the knapsack problem and greedy algoriths.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag explains dynamic programming and shows some applications of the process.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: Eric Grimson
Prof. Grimson discusses graph models and depth-first and breadth-first search algorithms.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag introduces stochastic processes and basic probability theory.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag discusses how to build simulations and plot graphs in Python.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag discusses the Monte Carlo simulation, Roulette
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag continues discussing Monte Carlo simulations.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag discusses sampling and how to approach and analyze real data.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: Eric Grimson
Prof. Grimson talks about how to model experimental data in a way that gives a sense of the underlying mechanism and to predict behavior in new settings.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: Eric Grimson
Prof. Grimson continues on the topic of modeling experimental data.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: Eric Grimson
In this lecture, Prof. Grimson introduces machine learning and shows examples of supervised learning using feature vectors.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag discusses clustering.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag introduces supervised learning with nearest neighbor classification using feature scaling and decision trees.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag finishes discussing classification and introduces common statistical fallacies and pitfalls.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu

MIT 6.0002 Introduction to Computational Thinking and Data Science, Fall 2016
View the complete course: http://ocw.mit.edu/6-0002F16
Instructor: John Guttag
Prof. Guttag continues the conversation about statistical fallacies and summarizes the take-aways of the course.
License: Creative Commons BY-NC-SA
More information at http://ocw.mit.edu/terms
More courses at http://ocw.mit.edu